Hierarchical graphene nanoribbon assemblies feature unique electronic and mechanical properties.

نویسندگان

  • Zhiping Xu
  • Markus J Buehler
چکیده

Graphene nanoribbons present intriguing electronic properties due to their characteristic size and edge shape, and have been suggested for a wide range of applications from electronics to electromechanical systems. To bridge the scales from their nanostructural geometry--the key for their unique properties--to the requirements critical for large-scale electronics and device applications, here we propose a de novo hierarchical material assembled from functionalized graphene nanoribbons stabilized through hydrogen bonds, mimicking the structure of beta-sheet proteins. By investigating their mechanical and electronic properties through first principles calculations, we demonstrate that hierarchical graphene nanoribbons not only preserve the unique electronic properties of individual graphene nanoribbons in the bulk, but are also energetically and mechanically stable. Specifically, we find that the energy gap of the bulk material shrinks as the width of the constituting graphene nanoribbons increases. The tuning of bulk material properties through controlling the nanostructure enables the synthesis of a broader class of biomimetic multifunctional mechanomutable and electromutable nanomaterials for electromechanical applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic Behavior of Doped Graphene Nanoribbon Device: NEGF+DFT

Quantum transport properties of pure and functioned infinite lead-connection region-lead systembased on the zigzag graphene nanoribbon (2-zGNR) have been investigated. In this work the effectof the doping functionalization on the quantum transport of the 2-zGNR has been computationallystudied. Also, the effect of the imposed gate voltages (-3.0, 0.0 and +3.0 V) and bias voltages 0.0 to2.0 V hav...

متن کامل

Reversible, opto-mechanically induced spin-switching in a nanoribbon-spiropyran hybrid material.

It has recently been shown that electronic transport in zigzag graphene nanoribbons becomes spin-polarized upon application of an electric field across the nanoribbon width. However, the electric fields required to experimentally induce this magnetic state are typically large and difficult to apply in practice. Here, using both first-principles density functional theory (DFT) and time-dependent...

متن کامل

Engineering enhanced thermoelectric properties in zigzag graphene nanoribbons

We theoretically investigate the thermoelectric properties of zigzag graphene nanoribbons in the presence of extended line defects, substrate impurities, and edge roughness along the nanoribbon’s length. A nearest-neighbor tight-binding model for the electronic structure and a fourth nearest-neighbor force constant model for the phonon bandstructure are used. For transport, we employ quantum me...

متن کامل

Self‐Assembled Graphene‐Based Architectures and Their Applications

Due to unique planar structures and remarkable thermal, electronic, and mechanical properties, chemically modified graphenes (CMGs) such as graphene oxides, reduced graphene oxides, and the related derivatives are recognized as the attractive building blocks for "bottom-up" nanotechnology, while self-assembly of CMGs has emerged as one of the most promising approaches to construct advanced func...

متن کامل

The stability and electronic properties of novel three-dimensional graphene-MoS2 hybrid structure

Three-dimensional (3D) hybrid layered materials receive a lot of attention because of their outstanding intrinsic properties and wide applications. In this work, the stability and electronic structure of three-dimensional graphene-MoS2 (3 DGM) hybrid structures are examined based on first-principle calculations. The results reveal that the 3 DGMs can easily self-assembled by graphene nanosheet ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 20 37  شماره 

صفحات  -

تاریخ انتشار 2009